Atlas of Rice Grain Filling-Related Metabolism under High Temperature: Joint Analysis of Metabolome and Transcriptome Demonstrated Inhibition of Starch Accumulation and Induction of Amino Acid Accumulation
نویسندگان
چکیده
High temperature impairs grain filling by inhibiting the deposition of storage materials such as starch and protein. To comprehend its impact on grain filling metabolism in rice (Oryza sativa), levels of metabolites and transcripts related to central pathways of metabolism were simultaneously determined in developing caryopses exposed to high temperature (33 degrees C/28 degrees C) and a control temperature (25 degrees C/20 degrees C) during the milky stage. A capillary electrophoresis-based metabolomic analysis revealed that high temperature increased the accumulation of sucrose and pyruvate/ oxaloacetate-derived amino acids and decreased levels of sugar phosphates and organic acids involved in glycolysis/gluconeogenesis and the tricarboxylic acid (TCA) cycle, respectively. A transcriptomic analysis using a whole genome-covering microarray unraveled the possible metabolic steps causing the shortage of storage materials under the elevated temperature. Starch deposition might be impaired by down-regulation of sucrose import/degradation and starch biosynthesis, and/or up-regulation of starch degradation as well as inefficient ATP production by an inhibited cytochrome respiration chain, as indicated by the response of gene expression to high temperature. Amino acid accumulation might be attributed to the heat-stable import of amino acids into the caryopsis and/or repression of protein synthesis especially the tRNA charging step under high temperature. An atlas showing the effect of high temperature on levels of metabolites and gene expression in the central metabolic pathways is presented.
منابع مشابه
Omics-based Approach for Cereal Starch Biosynthesis: Toward a Determination of Key Factors for Quality of Rice Grain Affected by High Temperature
High temperature impairs grain filling of rice by inhibiting accumulation of starch in the endosperm, making the grain appear chalky. It affects the molecular structure of a starch component, amylopectin (e.g., elongation of its chains), then hardening the texture of cooked rice. Recent comprehensive analyses such as transcriptome, proteome and metabolome which are assisted by the rice genome i...
متن کاملRice grain quality: related properties and effective factors
Rice provides food for more than half of the world's population. Unlike other cereals used in the form of processed, rice is mostly consumed directly with removal of paddy and brown husks. Therefore, considering rice grain quality is one of the main factors in product marketability and consumption. Rice grain quality can be considerd and evaluated by assessment of four properties: physical, che...
متن کاملGrain Filling Rate and Duration in Bread Wheat Under Irrigated and Drought Stressed Conditions
Abstract Eleven wheat cultivars were evaluated at 10-day intervals, beginning from anthesis, under irrigated and drought stress conditions during 2006-2007. The effects of irrigation, genotype and date of harvest were significant for most of the studied characters. Water deficit decreased pre-and post-anthesis assimilation rate, grain weight per spike, grain number per spike and 1000 grain wei...
متن کاملMaize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.
Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel m...
متن کاملDynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains.
Accumulation of reserve materials in filling grains involves the coordination of different metabolic and cellular processes, and understanding the molecular mechanisms underlying the interconnections remains a major challenge for proteomics. Rice (Oryza sativa) is an excellent model for studying grain filling because of its importance as a staple food and the available genome sequence database....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 51 شماره
صفحات -
تاریخ انتشار 2010